tabula
High level interfaces
tabula.io
This module is a wrapper of tabula, which enables table extraction from a PDF.
This module extracts tables from a PDF into a pandas DataFrame via jpype.
Instead of importing this module, you can import public interfaces such as
read_pdf()
, read_pdf_with_template()
, convert_into()
,
convert_into_by_batch()
from tabula module directory.
Note
If you want to use your own tabula-java JAR file, set TABULA_JAR
to
environment variable for JAR path.
Example
>>> import tabula
>>> dfs = tabula.read_pdf("/path/to/sample.pdf", pages="all")
- tabula.io.convert_into(input_path: IO | str | PathLike, output_path: str, output_format: str = 'csv', java_options: List[str] | None = None, pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Sequence[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, force_subprocess: bool = False, options: str = '') None [source]
Convert tables from PDF into a file. Output file will be saved into output_path.
- Parameters:
input_path (file like obj) – File like object of target PDF file.
output_path (str) – File path of output file.
output_format (str, optional) – Output format of this function (
csv
,json
ortsv
). Default:csv
java_options (list, optional) –
Set java options. This option will be ignored once JVM is launched.
Example
"-Xmx256m"
.pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (Sequence, optional) –
X coordinates of column boundaries. Must be sorted and of a datatype that preserves order, e.g. tuple or list
Example
[10.1, 20.2, 30.3]
format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.
force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default
False
.options (str, optional) – Raw option string for tabula-java.
- Raises:
FileNotFoundError – If downloaded remote file doesn’t exist.
ValueError – If output_format is unknown format, or if downloaded remote file size is 0.
tabula.errors.JavaNotFoundError – If java is not installed or found.
subprocess.CalledProcessError – If tabula-java execution failed.
- tabula.io.convert_into_by_batch(input_dir: str, output_format: str = 'csv', java_options: List[str] | None = None, pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Sequence[float] | None = None, relative_columns: bool = False, format: str | None = None, output_path: str | None = None, force_subprocess: bool = False, options: str = '') None [source]
Convert tables from PDFs in a directory.
- Parameters:
input_dir (str) – Directory path.
output_format (str, optional) – Output format of this function (csv, json or tsv)
java_options (list, optional) – Set java options like -Xmx256m. This option will be ignored once JVM is launched.
pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (Sequence, optional) –
X coordinates of column boundaries. Must be sorted and of a datatype that preserves order, e.g. tuple or list
Example
[10.1, 20.2, 30.3]
relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default
False
.format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default
False
.options (str, optional) – Raw option string for tabula-java.
- Returns:
Nothing. Outputs are saved into the same directory with input_dir
- Raises:
ValueError – If input_dir doesn’t exist.
- tabula.io.read_pdf(input_path: IO | str | PathLike, output_format: str | None = None, encoding: str = 'utf-8', java_options: List[str] | None = None, pandas_options: Dict[str, Any] | None = None, multiple_tables: bool = True, user_agent: str | None = None, use_raw_url: bool = False, pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Sequence[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, output_path: str | None = None, force_subprocess: bool = False, options: str = '') List[DataFrame] | Dict[str, Any] [source]
Read tables in PDF.
- Parameters:
input_path (str, path object or file-like object) – File like object of target PDF file. It can be URL, which is downloaded by tabula-py automatically.
output_format (str, optional) – Output format for returned object (
dataframe
orjson
) Giving this option enforces to ignore multiple_tables option.encoding (str, optional) – Encoding type for pandas. Default:
utf-8
java_options (list, optional) –
Set java options. This option will be ignored once JVM is launched.
Example
["-Xmx256m"]
pandas_options (dict, optional) –
Set pandas options.
Example
{'header': None}
Note
With
multiple_tables=True
(default), pandas_options is passed to pandas.DataFrame, otherwise it is passed to pandas.read_csv. Those two functions are different for accept options likedtype
.multiple_tables (bool) –
It enables to handle multiple tables within a page. Default:
True
Note
If multiple_tables option is enabled, tabula-py uses not
pd.read_csv()
, butpd.DataFrame()
. Make sure to pass appropriate pandas_options.user_agent (str, optional) – Set a custom user-agent when download a pdf from a url. Otherwise it uses the default
urllib.request
user-agent.use_raw_url (bool) – It enforces to use input_path string for url without quoting/dequoting. Default: False
pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (Sequence, optional) –
X coordinates of column boundaries. Must be sorted and of a datatype that preserves order, e.g. tuple or list
Example
[10.1, 20.2, 30.3]
relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default
False
.format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.
output_path (str, optional) – Output file path. File format of it is depends on
format
. Same as--outfile
option of tabula-java.force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default
False
.options (str, optional) – Raw option string for tabula-java.
- Returns:
list of DataFrames or dict.
- Raises:
FileNotFoundError – If downloaded remote file doesn’t exist.
ValueError – If output_format is unknown format, or if downloaded remote file size is 0.
tabula.errors.CSVParseError – If pandas CSV parsing failed.
tabula.errors.JavaNotFoundError – If java is not installed or found.
subprocess.CalledProcessError – If tabula-java execution failed.
Examples
Here is a simple example. Note that
read_pdf()
only extract page 1 by default.- Notes:
As of tabula-py 2.0.0,
read_pdf()
sets multiple_tables=True by default. If you want to get consistent output with previous version, set multiple_tables=False.
>>> import tabula >>> pdf_path = "https://github.com/chezou/tabula-py/raw/master/tests/resources/data.pdf" >>> tabula.read_pdf(pdf_path, stream=True) [ Unnamed: 0 mpg cyl disp hp drat wt qsec vs am gear carb 0 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 5 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 10 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 11 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 12 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 13 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 14 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 15 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 16 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 17 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 18 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 19 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 20 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 21 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 22 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 23 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 24 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 25 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 26 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 27 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 28 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 29 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 30 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 31 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2]
If you want to extract all pages, set
pages="all"
.>>> dfs = tabula.read_pdf(pdf_path, pages="all") >>> len(dfs) 4 >>> dfs [ 0 1 2 3 4 5 6 7 8 9 0 mpg cyl disp hp drat wt qsec vs am gear 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5, 0 1 2 3 4 0 Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa, 0 1 2 3 4 5 0 NaN Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 145 6.7 3.3 5.7 2.5 virginica 2 146 6.7 3.0 5.2 2.3 virginica 3 147 6.3 2.5 5.0 1.9 virginica 4 148 6.5 3.0 5.2 2.0 virginica 5 149 6.2 3.4 5.4 2.3 virginica 6 150 5.9 3.0 5.1 1.8 virginica, 0 0 supp 1 VC 2 VC 3 VC 4 VC 5 VC 6 VC 7 VC 8 VC 9 VC 10 VC 11 VC 12 VC 13 VC 14 VC]
- tabula.io.read_pdf_with_template(input_path: IO | str | PathLike, template_path: IO | str | PathLike, pandas_options: Dict[str, Any] | None = None, encoding: str = 'utf-8', java_options: List[str] | None = None, user_agent: str | None = None, use_raw_url: bool = False, pages: str | int | Iterable[int] | None = None, guess: bool = False, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Sequence[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, output_path: str | None = None, force_subprocess: bool = False, options: str | None = None) List[DataFrame] [source]
Read tables in PDF with a Tabula App template.
- Parameters:
input_path (str, path object or file-like object) – File like object of target PDF file. It can be URL, which is downloaded by tabula-py automatically.
template_path (str, path object or file-like object) – File like object for Tabula app template. It can be URL, which is downloaded by tabula-py automatically.
pandas_options (dict, optional) – Set pandas options like {‘header’: None}.
encoding (str, optional) – Encoding type for pandas. Default is ‘utf-8’
java_options (list, optional) – Set java options like
["-Xmx256m"]
. This option will be ignored once JVM is launched.user_agent (str, optional) – Set a custom user-agent when download a pdf from a url. Otherwise it uses the default
urllib.request
user-agent.use_raw_url (bool) – It enforces to use input_path string for url without quoting/dequoting. Default: False
pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (Sequence, optional) –
X coordinates of column boundaries. Must be sorted and of a datatype that preserves order, e.g. tuple or list
Example
[10.1, 20.2, 30.3]
relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default
False
.format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.
output_path (str, optional) – Output file path. File format of it is depends on
format
. Same as--outfile
option of tabula-java.force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default
False
.options (str, optional) – Raw option string for tabula-java.
- Returns:
list of DataFrame.
- Raises:
FileNotFoundError – If downloaded remote file doesn’t exist.
ValueError – If output_format is unknown format, or if downloaded remote file size is 0.
tabula.errors.CSVParseError – If pandas CSV parsing failed.
tabula.errors.JavaNotFoundError – If java is not installed or found.
subprocess.CalledProcessError – If tabula-java execution failed.
Examples
You can use template file extracted by tabula app.
>>> import tabula >>> tabula.read_pdf_with_template(pdf_path, "/path/to/data.tabula-template.json") [ Unnamed: 0 mpg cyl disp hp ... qsec vs am gear carb 0 Mazda RX4 21.0 6 160.0 110 ... 16.46 0 1 4 4 1 Mazda RX4 Wag 21.0 6 160.0 110 ... 17.02 0 1 4 4 2 Datsun 710 22.8 4 108.0 93 ... 18.61 1 1 4 1 3 Hornet 4 Drive 21.4 6 258.0 110 ... 19.44 1 0 3 1 4 Hornet Sportabout 18.7 8 360.0 175 ... 17.02 0 0 3 2 5 Valiant 18.1 6 225.0 105 ... 20.22 1 0 3 1 6 Duster 360 14.3 8 360.0 245 ... 15.84 0 0 3 4 7 Merc 240D 24.4 4 146.7 62 ... 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 ... 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 ... 18.30 1 0 4 4 10 Merc 280C 17.8 6 167.6 123 ... 18.90 1 0 4 4 11 Merc 450SE 16.4 8 275.8 180 ... 17.40 0 0 3 3 12 Merc 450SL 17.3 8 275.8 180 ... 17.60 0 0 3 3 13 Merc 450SLC 15.2 8 275.8 180 ... 18.00 0 0 3 3 14 Cadillac Fleetwood 10.4 8 472.0 205 ... 17.98 0 0 3 4 15 Lincoln Continental 10.4 8 460.0 215 ... 17.82 0 0 3 4 16 Chrysler Imperial 14.7 8 440.0 230 ... 17.42 0 0 3 4 17 Fiat 128 32.4 4 78.7 66 ... 19.47 1 1 4 1 18 Honda Civic 30.4 4 75.7 52 ... 18.52 1 1 4 2 19 Toyota Corolla 33.9 4 71.1 65 ... 19.90 1 1 4 1 20 Toyota Corona 21.5 4 120.1 97 ... 20.01 1 0 3 1 21 Dodge Challenger 15.5 8 318.0 150 ... 16.87 0 0 3 2 22 AMC Javelin 15.2 8 304.0 150 ... 17.30 0 0 3 2 23 Camaro Z28 13.3 8 350.0 245 ... 15.41 0 0 3 4 24 Pontiac Firebird 19.2 8 400.0 175 ... 17.05 0 0 3 2 25 Fiat X1-9 27.3 4 79.0 66 ... 18.90 1 1 4 1 26 Porsche 914-2 26.0 4 120.3 91 ... 16.70 0 1 5 2 27 Lotus Europa 30.4 4 95.1 113 ... 16.90 1 1 5 2 28 Ford Pantera L 15.8 8 351.0 264 ... 14.50 0 1 5 4 29 Ferrari Dino 19.7 6 145.0 175 ... 15.50 0 1 5 6 30 Maserati Bora 15.0 8 301.0 335 ... 14.60 0 1 5 8 31 Volvo 142E 21.4 4 121.0 109 ... 18.60 1 1 4 2 [32 rows x 12 columns], 0 1 2 3 4 0 NaN Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa, 0 1 2 3 4 5 0 NaN Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 145 6.7 3.3 5.7 2.5 virginica 2 146 6.7 3.0 5.2 2.3 virginica 3 147 6.3 2.5 5.0 1.9 virginica 4 148 6.5 3.0 5.2 2.0 virginica 5 149 6.2 3.4 5.4 2.3 virginica, Unnamed: 0 supp dose 0 4.2 VC 0.5 1 11.5 VC 0.5 2 7.3 VC 0.5 3 5.8 VC 0.5 4 6.4 VC 0.5 5 10.0 VC 0.5 6 11.2 VC 0.5 7 11.2 VC 0.5 8 5.2 VC 0.5 9 7.0 VC 0.5 10 16.5 VC 1.0 11 16.5 VC 1.0 12 15.2 VC 1.0 13 17.3 VC 1.0]
tabula.util
Utility module providing some convenient functions.
- class tabula.util.TabulaOption(pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Sequence[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, output_path: str | None = None, options: str | None = '', multiple_tables: bool = True)[source]
Bases:
object
Build options for tabula-java
- Parameters:
pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (Sequence, optional) –
X coordinates of column boundaries. Must be sorted and of a datatype that preserves order, e.g. tuple or list
Example
[10.1, 20.2, 30.3]
relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default
False
.format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.
output_path (str, optional) – Output file path. File format of it is depends on
format
. Same as--outfile
option of tabula-java.options (str, optional) – Raw option string for tabula-java.
multiple_tables (bool, optional) – Extract multiple tables into a dataframe. Default: True
- area: Iterable[float] | Iterable[Iterable[float]] | None = None
- batch: str | None = None
- columns: Sequence[float] | None = None
- format: str | None = None
- guess: bool = True
- lattice: bool = False
- merge(other: TabulaOption) TabulaOption [source]
Merge two TabulaOption. self will overwrite other fields’ values.
- multiple_tables: bool = True
- options: str | None = ''
- output_path: str | None = None
- pages: str | int | Iterable[int] | None = None
- password: str | None = None
- relative_area: bool = False
- relative_columns: bool = False
- silent: bool | None = None
- stream: bool = False
Internal interfaces
tabula.template
- tabula.template.load_template(path_or_buffer: IO | str | PathLike) List[TabulaOption] [source]
Build tabula-py option from template file
- Parameters:
path_or_buffer (str, path object or file-like object) – File like object of Tabula app template.
- Returns:
tabula-py options
- Return type:
dict
tabula.file_util
- tabula.file_util.is_file_like(obj: IO | str | PathLike) bool [source]
Check file like object
- Parameters:
obj – file like object.
- Returns:
file like object or not
- Return type:
bool
- tabula.file_util.localize_file(path_or_buffer: IO | str | PathLike, user_agent: str | None = None, suffix: str = '.pdf', use_raw_url=False) Tuple[str, bool] [source]
Ensure localize target file.
If the target file is remote, this function fetches into local storage.
- Parameters:
path_or_buffer (str) – File path or file like object or URL of target file.
user_agent (str, optional) – Set a custom user-agent when download a pdf from a url. Otherwise it uses the default
urllib.request
user-agent.suffix (str, optional) – File extension to check.
use_raw_url (bool) – Use path_or_buffer without quoting/dequoting.
- Returns:
tuple of str and bool, which represents file name in local storage and temporary file flag.
- Return type:
(str, bool)