tabula-py: Read tables in a PDF into DataFrame

tabula-py is a simple Python wrapper of tabula-java, which can read table of PDF. You can read tables from PDF and convert them into pandas’ DataFrame. tabula-py also converts a PDF file into CSV/TSV/JSON file.

We highly recommend looking at the example notebook and trying it on Google Colab.

For high-level API reference, see High level interfaces.

Getting Started

Requirements

  • Java

    • Java 8+

  • Python

    • 3.8+

Installation

Before installing tabula-py, ensure you have Java runtime on your environment.

You can install tabula-py from PyPI with pip command.

pip install tabula-py

If you want to leverage faster execution with jpype, install with jpype extra.

pip install tabula-py[jpype]

Note

conda recipe on conda-forge is not maintained by us. We recommend installing via pip to use the latest version of tabula-py.

Get tabula-py working (Windows 10)

This instruction is originally written by @lahoffm. Thanks!

  • If you don’t have it already, install Java

  • Try to run an example code (replace the appropriate PDF file name).

  • If there’s a FileNotFoundError when it calls read_pdf(), and when you type java on command line it says 'java' is not recognized as an internal or external command, operable program or batch file, you should set PATH environment variable to point to the Java directory.

  • Find the main Java folder like jre... or jdk.... On Windows 10 it was under C:\Program Files\Java

  • On Windows 10: Control Panel -> System and Security -> System -> Advanced System Settings -> Environment Variables -> Select PATH –> Edit

  • Add the bin folder like C:\Program Files\Java\jre1.8.0_144\bin, hit OK a bunch of times.

  • On command line, java should now print a list of options, and tabula.read_pdf() should run.

Example

tabula-py enables you to extract tables from a PDF into a DataFrame, or a JSON. It can also extract tables from a PDF and save the file as a CSV, a TSV, or a JSON.

import tabula

# Read pdf into a list of DataFrame
dfs = tabula.read_pdf("test.pdf", pages='all')

# Read remote pdf into a list of DataFrame
dfs2 = tabula.read_pdf("https://github.com/tabulapdf/tabula-java/raw/master/src/test/resources/technology/tabula/arabic.pdf")

# convert PDF into CSV
tabula.convert_into("test.pdf", "output.csv", output_format="csv", pages='all')

# convert all PDFs in a directory
tabula.convert_into_by_batch("input_directory", output_format='csv', pages='all')

See example notebook for more detail. I also recommend reading the tutorial article written by @aegis4048 and another tutorial written by @tdpetrou.

Note

If you face some issues, we’d recommend trying tabula.app to see the limitation of tabula-java. Also, see FAQ as well.

FAQ

tabula-py does not work

There are several possible reasons, but tabula-py is just a wrapper of tabula-java , make sure you’ve installed Java, and you can use java command on your terminal. Many issue reporters forget to set PATH for java command.

You can check whether tabula-py can call java from the Python process with tabula.environment_info() function.

I can’t run from tabula import read_pdf

If you’ve installed tabula, it will conflict with the namespace. You should install tabula-py after removing tabula.

pip uninstall tabula
pip install tabula-py

I got an empty DataFrame. How can I resolve it?

tabula-py and tabula-java don’t support image-based PDFs. It should contain text-based table information.

Before tuning the tabula-py option, you have to check you set an appropriate pages option. By default, tabula-py extracts tables from the first page of your PDF, with pages=1 argument. If you want to extract from all pages, you need to set pages option like pages="all" or pages=[1, 2, 3]. You might want to extract multiple tables from multiple pages, if so you need to set multiple_tables=True together.

Depending on the PDF’s complexity, it might be difficult to extract table contents accurately.

Tuning points of tabula-py are limited:

  • Set specific area for accurate table detection

  • Try lattice=True option for the table having explicit lines. Or try stream=True option

To know the limitation of tabula-java, I highly recommend using tabula app, the GUI version of tabula-java.

tabula app can:

  • specify the area with GUI

  • show a preview of the extraction with lattice or stream mode

  • export template that is reusable for tabula-py

Even if you can’t extract tabula-py for those table contents which can be extracted tabula app appropriately, file an issue on GitHub.

The result is different from tabula-java. Or, stream option seems not to work appropriately

tabula-py set guess option True by default, for beginners. It is known to make a conflict between stream option. If you feel something strange with your result, please set guess=False.

Can I use option xxx?

Yes. You can use options argument as follows. The format is the same as CLI of tabula-java.

read_pdf(file_path, options="--columns 10.1,20.2,30.3")

How can I ignore useless area?

In short, you can extract with area and spreadsheet options.

In [4]: tabula.read_pdf('./table.pdf', spreadsheet=True, area=(337.29, 226.49, 472.85, 384.91))
Picked up JAVA_TOOL_OPTIONS: -Dfile.encoding=UTF-8
Out[4]:
  Unnamed: 0 Col2 Col3 Col4 Col5
0          A    B   12    R    G
1        NaN    R    T   23    H
2          B    B   33    R    A
3          C    T   99    E    M
4          D    I   12   34    M
5          E    I    I    W   90
6        NaN    1    2    W    h
7        NaN    4    3    E    H
8          F    E   E4    R    4

How to use area option

According to tabula-java wiki, there is an explanation of how to specify the area: https://github.com/tabulapdf/tabula-java/wiki/Using-the-command-line-tabula-extractor-tool#grab-coordinates-of-the-table-you-want

For example, using macOS’s preview, I got area information of this PDF:

image
java -jar ./target/tabula-1.0.1-jar-with-dependencies.jar -p all -a $y1,$x1,$y2,$x2 -o $csvfile $filename

given

# Note the left, top, height, and width parameters and calculate the following:

y1 = top
x1 = left
y2 = top + height
x2 = left + width

I confirmed with tabula-java:

java -jar ./tabula/tabula-1.0.1-jar-with-dependencies.jar -a "337.29,226.49,472.85,384.91" table.pdf

Without -r(same as --spreadsheet) option, it does not work properly.

I faced ParserError: Error tokenizing data. C error. How can I extract multiple tables?

This error occurs when pandas tries to extract multiple tables with different column size at once. Use multiple_tables option, then you can avoid this error.

I want to prevent tabula-py from stealing focus on every call on my mac

Set java_options=["-Djava.awt.headless=true"]. kudos @jakekara

I got ? character with results on Windows. How can I avoid it?

If the encoding of PDF is UTF-8, you should set chcp 65001 on your terminal before launching a Python process.

chcp 65001

Then you can extract UTF-8 PDF with java_options="-Dfile.encoding=UTF8" option. This option will be added with encoding='utf-8' option, which is also set by default.

# This is an example for java_options is set explicitly
df = read_pdf(file_path, java_options="-Dfile.encoding=UTF8")

Replace 65001 and UTF-8 appropriately, if the file encoding isn’t UTF-8.

I can’t extract file/directory names with space on Windows

You should escape the file/directory name yourself.

I want to use a different tabula .jar file

You can specify the jar location via environment variable

export TABULA_JAR=".../tabula-x.y.z-jar-with-dependencies.jar"

I want to extract multiple tables from a document

You can use the following example code

df = read_pdf(file_path, multiple_tables=True)

The result will be a list of DataFrames. If you want separate tables across all pages in a document, use the pages argument.

Table cell contents sometimes overflow into the next row.

You can try using lattice=True, which will often work if there are lines separating cells in the table.

I got a warning/error message from PDFBox including org.apache.pdfbox.pdmodel.. Is it the cause of the empty dataframe?

No.

Sometimes, you might see a message like `` Jul 17, 2019 10:21:25 AM org.apache.pdfbox.pdmodel.font.PDType1Font WARNING: Using fallback font NimbusSanL-Regu for Univers. Nothing was parsed from this one.`` This error message came from Apache PDFBox which is used under tabula-java, and this is caused by the PDF itself. Neither tabula-py nor tabula-java can’t handle the warning itself, except for the silent option that suppresses the warning.

java_options is ignored once read_pdf or similar funcion is called.

Since jpype doesn’t support changing JVM options after the JVM is started, java_options is ignored once read_pdf or similar funcion is called. If you want to change JVM options, you need to restart the Python process. See also: https://jpype.readthedocs.io/en/latest/api.html#jpype.shutdownJVM

I can’t figure out accurate extraction with tabula-py. Are there any similar Python libraries?

I know tabula-py has limitations depending on tabula-java. Sometimes your PDF is too complex to tabula-py. If you want to find plan B, there are similar packages as the following:

Contributing to tabula-py

Interested in helping out? I’d love to have your help!

You can help by:

  • Reporting a bug.

  • Adding or editing documentation.

  • Contributing code via a Pull Request.

  • Write a blog post or spread the word about tabula-py to people who might be able to benefit from using it.

Code formatting and testing

If you want to become a contributor, you can install dependency after cloning the repo as follows:

pip install -e .[dev, test]
pip install nox

For running tests and linter, run nox command.

nox .

Documentation

You can build document on your environment as follows:

pip install -e .[doc]
cd docs && make html

The documentation source is under docs/ directory and the document is published on Read the Docs automatically.

tabula

High level interfaces

tabula.io

This module is a wrapper of tabula, which enables table extraction from a PDF.

This module extracts tables from a PDF into a pandas DataFrame via jpype.

Instead of importing this module, you can import public interfaces such as read_pdf(), read_pdf_with_template(), convert_into(), convert_into_by_batch() from tabula module directory.

Note

If you want to use your own tabula-java JAR file, set TABULA_JAR to environment variable for JAR path.

Example

>>> import tabula
>>> dfs = tabula.read_pdf("/path/to/sample.pdf", pages="all")
tabula.io.convert_into(input_path: IO | str | PathLike, output_path: str, output_format: str = 'csv', java_options: List[str] | None = None, pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Iterable[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, force_subprocess: bool = False, options: str = '') None[source]

Convert tables from PDF into a file. Output file will be saved into output_path.

Parameters:
  • input_path (file like obj) – File like object of target PDF file.

  • output_path (str) – File path of output file.

  • output_format (str, optional) – Output format of this function (csv, json or tsv). Default: csv

  • java_options (list, optional) –

    Set java options. This option will be ignored once JVM is launched.

    Example

    "-Xmx256m".

  • pages (str, int, iterable of int, optional) –

    An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1

    Examples

    '1-2,3', 'all', [1,2]

  • guess (bool, optional) –

    Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.

    Note

    As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.

  • area (iterable of float, iterable of iterable of float, optional) –

    Portion of the page to analyze(top,left,bottom,right). Default is entire page.

    Note

    If you want to use multiple area options and extract in one table, it should be better to set multiple_tables=False for read_pdf()

    Examples

    [269.875,12.75,790.5,561], [[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]

  • relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by '%', input will be taken as % of actual height or width of the page. Default False.

  • lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • password (str, optional) – Password to decrypt document. Default: empty

  • silent (bool, optional) – Suppress all stderr output.

  • columns (iterable, optional) –

    X coordinates of column boundaries.

    Example

    [10.1, 20.2, 30.3]

  • format (str, optional) – Format for output file or extracted object. ("CSV", "TSV", "JSON")

  • batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.

  • force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default False.

  • options (str, optional) – Raw option string for tabula-java.

Raises:
  • FileNotFoundError – If downloaded remote file doesn’t exist.

  • ValueError – If output_format is unknown format, or if downloaded remote file size is 0.

  • tabula.errors.JavaNotFoundError – If java is not installed or found.

  • subprocess.CalledProcessError – If tabula-java execution failed.

tabula.io.convert_into_by_batch(input_dir: str, output_format: str = 'csv', java_options: List[str] | None = None, pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Iterable[float] | None = None, relative_columns: bool = False, format: str | None = None, output_path: str | None = None, force_subprocess: bool = False, options: str = '') None[source]

Convert tables from PDFs in a directory.

Parameters:
  • input_dir (str) – Directory path.

  • output_format (str, optional) – Output format of this function (csv, json or tsv)

  • java_options (list, optional) – Set java options like -Xmx256m. This option will be ignored once JVM is launched.

  • pages (str, int, iterable of int, optional) –

    An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1

    Examples

    '1-2,3', 'all', [1,2]

  • guess (bool, optional) –

    Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.

    Note

    As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.

  • area (iterable of float, iterable of iterable of float, optional) –

    Portion of the page to analyze(top,left,bottom,right). Default is entire page.

    Note

    If you want to use multiple area options and extract in one table, it should be better to set multiple_tables=False for read_pdf()

    Examples

    [269.875,12.75,790.5,561], [[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]

  • relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by '%', input will be taken as % of actual height or width of the page. Default False.

  • lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • password (str, optional) – Password to decrypt document. Default: empty

  • silent (bool, optional) – Suppress all stderr output.

  • columns (iterable, optional) –

    X coordinates of column boundaries.

    Example

    [10.1, 20.2, 30.3]

  • relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default False.

  • format (str, optional) – Format for output file or extracted object. ("CSV", "TSV", "JSON")

  • force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default False.

  • options (str, optional) – Raw option string for tabula-java.

Returns:

Nothing. Outputs are saved into the same directory with input_dir

Raises:

ValueError – If input_dir doesn’t exist.

tabula.io.read_pdf(input_path: IO | str | PathLike, output_format: str | None = None, encoding: str = 'utf-8', java_options: List[str] | None = None, pandas_options: Dict[str, Any] | None = None, multiple_tables: bool = True, user_agent: str | None = None, use_raw_url: bool = False, pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Iterable[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, output_path: str | None = None, force_subprocess: bool = False, options: str = '') List[DataFrame] | Dict[str, Any][source]

Read tables in PDF.

Parameters:
  • input_path (str, path object or file-like object) – File like object of target PDF file. It can be URL, which is downloaded by tabula-py automatically.

  • output_format (str, optional) – Output format for returned object (dataframe or json) Giving this option enforces to ignore multiple_tables option.

  • encoding (str, optional) – Encoding type for pandas. Default: utf-8

  • java_options (list, optional) –

    Set java options. This option will be ignored once JVM is launched.

    Example

    ["-Xmx256m"]

  • pandas_options (dict, optional) –

    Set pandas options.

    Example

    {'header': None}

    Note

    With multiple_tables=True (default), pandas_options is passed to pandas.DataFrame, otherwise it is passed to pandas.read_csv. Those two functions are different for accept options like dtype.

  • multiple_tables (bool) –

    It enables to handle multiple tables within a page. Default: True

    Note

    If multiple_tables option is enabled, tabula-py uses not pd.read_csv(), but pd.DataFrame(). Make sure to pass appropriate pandas_options.

  • user_agent (str, optional) – Set a custom user-agent when download a pdf from a url. Otherwise it uses the default urllib.request user-agent.

  • use_raw_url (bool) – It enforces to use input_path string for url without quoting/dequoting. Default: False

  • pages (str, int, iterable of int, optional) –

    An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1

    Examples

    '1-2,3', 'all', [1,2]

  • guess (bool, optional) –

    Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.

    Note

    As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.

  • area (iterable of float, iterable of iterable of float, optional) –

    Portion of the page to analyze(top,left,bottom,right). Default is entire page.

    Note

    If you want to use multiple area options and extract in one table, it should be better to set multiple_tables=False for read_pdf()

    Examples

    [269.875,12.75,790.5,561], [[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]

  • relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by '%', input will be taken as % of actual height or width of the page. Default False.

  • lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • password (str, optional) – Password to decrypt document. Default: empty

  • silent (bool, optional) – Suppress all stderr output.

  • columns (iterable, optional) –

    X coordinates of column boundaries.

    Example

    [10.1, 20.2, 30.3]

  • relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default False.

  • format (str, optional) – Format for output file or extracted object. ("CSV", "TSV", "JSON")

  • batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.

  • output_path (str, optional) – Output file path. File format of it is depends on format. Same as --outfile option of tabula-java.

  • force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default False.

  • options (str, optional) – Raw option string for tabula-java.

Returns:

list of DataFrames or dict.

Raises:
  • FileNotFoundError – If downloaded remote file doesn’t exist.

  • ValueError – If output_format is unknown format, or if downloaded remote file size is 0.

  • tabula.errors.CSVParseError – If pandas CSV parsing failed.

  • tabula.errors.JavaNotFoundError – If java is not installed or found.

  • subprocess.CalledProcessError – If tabula-java execution failed.

Examples

Here is a simple example. Note that read_pdf() only extract page 1 by default.

Notes:

As of tabula-py 2.0.0, read_pdf() sets multiple_tables=True by default. If you want to get consistent output with previous version, set multiple_tables=False.

>>> import tabula
>>> pdf_path = "https://github.com/chezou/tabula-py/raw/master/tests/resources/data.pdf"
>>> tabula.read_pdf(pdf_path, stream=True)
[             Unnamed: 0   mpg  cyl   disp   hp  drat     wt   qsec  vs  am  gear  carb
0             Mazda RX4  21.0    6  160.0  110  3.90  2.620  16.46   0   1     4     4
1         Mazda RX4 Wag  21.0    6  160.0  110  3.90  2.875  17.02   0   1     4     4
2            Datsun 710  22.8    4  108.0   93  3.85  2.320  18.61   1   1     4     1
3        Hornet 4 Drive  21.4    6  258.0  110  3.08  3.215  19.44   1   0     3     1
4     Hornet Sportabout  18.7    8  360.0  175  3.15  3.440  17.02   0   0     3     2
5               Valiant  18.1    6  225.0  105  2.76  3.460  20.22   1   0     3     1
6            Duster 360  14.3    8  360.0  245  3.21  3.570  15.84   0   0     3     4
7             Merc 240D  24.4    4  146.7   62  3.69  3.190  20.00   1   0     4     2
8              Merc 230  22.8    4  140.8   95  3.92  3.150  22.90   1   0     4     2
9              Merc 280  19.2    6  167.6  123  3.92  3.440  18.30   1   0     4     4
10            Merc 280C  17.8    6  167.6  123  3.92  3.440  18.90   1   0     4     4
11           Merc 450SE  16.4    8  275.8  180  3.07  4.070  17.40   0   0     3     3
12           Merc 450SL  17.3    8  275.8  180  3.07  3.730  17.60   0   0     3     3
13          Merc 450SLC  15.2    8  275.8  180  3.07  3.780  18.00   0   0     3     3
14   Cadillac Fleetwood  10.4    8  472.0  205  2.93  5.250  17.98   0   0     3     4
15  Lincoln Continental  10.4    8  460.0  215  3.00  5.424  17.82   0   0     3     4
16    Chrysler Imperial  14.7    8  440.0  230  3.23  5.345  17.42   0   0     3     4
17             Fiat 128  32.4    4   78.7   66  4.08  2.200  19.47   1   1     4     1
18          Honda Civic  30.4    4   75.7   52  4.93  1.615  18.52   1   1     4     2
19       Toyota Corolla  33.9    4   71.1   65  4.22  1.835  19.90   1   1     4     1
20        Toyota Corona  21.5    4  120.1   97  3.70  2.465  20.01   1   0     3     1
21     Dodge Challenger  15.5    8  318.0  150  2.76  3.520  16.87   0   0     3     2
22          AMC Javelin  15.2    8  304.0  150  3.15  3.435  17.30   0   0     3     2
23           Camaro Z28  13.3    8  350.0  245  3.73  3.840  15.41   0   0     3     4
24     Pontiac Firebird  19.2    8  400.0  175  3.08  3.845  17.05   0   0     3     2
25            Fiat X1-9  27.3    4   79.0   66  4.08  1.935  18.90   1   1     4     1
26        Porsche 914-2  26.0    4  120.3   91  4.43  2.140  16.70   0   1     5     2
27         Lotus Europa  30.4    4   95.1  113  3.77  1.513  16.90   1   1     5     2
28       Ford Pantera L  15.8    8  351.0  264  4.22  3.170  14.50   0   1     5     4
29         Ferrari Dino  19.7    6  145.0  175  3.62  2.770  15.50   0   1     5     6
30        Maserati Bora  15.0    8  301.0  335  3.54  3.570  14.60   0   1     5     8
31           Volvo 142E  21.4    4  121.0  109  4.11  2.780  18.60   1   1     4     2]

If you want to extract all pages, set pages="all".

>>> dfs = tabula.read_pdf(pdf_path, pages="all")
>>> len(dfs)
4
>>> dfs
[       0    1      2    3     4      5      6   7   8     9
0    mpg  cyl   disp   hp  drat     wt   qsec  vs  am  gear
1   21.0    6  160.0  110  3.90  2.620  16.46   0   1     4
2   21.0    6  160.0  110  3.90  2.875  17.02   0   1     4
3   22.8    4  108.0   93  3.85  2.320  18.61   1   1     4
4   21.4    6  258.0  110  3.08  3.215  19.44   1   0     3
5   18.7    8  360.0  175  3.15  3.440  17.02   0   0     3
6   18.1    6  225.0  105  2.76  3.460  20.22   1   0     3
7   14.3    8  360.0  245  3.21  3.570  15.84   0   0     3
8   24.4    4  146.7   62  3.69  3.190  20.00   1   0     4
9   22.8    4  140.8   95  3.92  3.150  22.90   1   0     4
10  19.2    6  167.6  123  3.92  3.440  18.30   1   0     4
11  17.8    6  167.6  123  3.92  3.440  18.90   1   0     4
12  16.4    8  275.8  180  3.07  4.070  17.40   0   0     3
13  17.3    8  275.8  180  3.07  3.730  17.60   0   0     3
14  15.2    8  275.8  180  3.07  3.780  18.00   0   0     3
15  10.4    8  472.0  205  2.93  5.250  17.98   0   0     3
16  10.4    8  460.0  215  3.00  5.424  17.82   0   0     3
17  14.7    8  440.0  230  3.23  5.345  17.42   0   0     3
18  32.4    4   78.7   66  4.08  2.200  19.47   1   1     4
19  30.4    4   75.7   52  4.93  1.615  18.52   1   1     4
20  33.9    4   71.1   65  4.22  1.835  19.90   1   1     4
21  21.5    4  120.1   97  3.70  2.465  20.01   1   0     3
22  15.5    8  318.0  150  2.76  3.520  16.87   0   0     3
23  15.2    8  304.0  150  3.15  3.435  17.30   0   0     3
24  13.3    8  350.0  245  3.73  3.840  15.41   0   0     3
25  19.2    8  400.0  175  3.08  3.845  17.05   0   0     3
26  27.3    4   79.0   66  4.08  1.935  18.90   1   1     4
27  26.0    4  120.3   91  4.43  2.140  16.70   0   1     5
28  30.4    4   95.1  113  3.77  1.513  16.90   1   1     5
29  15.8    8  351.0  264  4.22  3.170  14.50   0   1     5
30  19.7    6  145.0  175  3.62  2.770  15.50   0   1     5
31  15.0    8  301.0  335  3.54  3.570  14.60   0   1     5,               0            1             2            3        4
0  Sepal.Length  Sepal.Width  Petal.Length  Petal.Width  Species
1           5.1          3.5           1.4          0.2   setosa
2           4.9          3.0           1.4          0.2   setosa
3           4.7          3.2           1.3          0.2   setosa
4           4.6          3.1           1.5          0.2   setosa
5           5.0          3.6           1.4          0.2   setosa
6           5.4          3.9           1.7          0.4   setosa,      0             1            2             3            4          5
0  NaN  Sepal.Length  Sepal.Width  Petal.Length  Petal.Width    Species
1  145           6.7          3.3           5.7          2.5  virginica
2  146           6.7          3.0           5.2          2.3  virginica
3  147           6.3          2.5           5.0          1.9  virginica
4  148           6.5          3.0           5.2          2.0  virginica
5  149           6.2          3.4           5.4          2.3  virginica
6  150           5.9          3.0           5.1          1.8  virginica,        0
0   supp
1     VC
2     VC
3     VC
4     VC
5     VC
6     VC
7     VC
8     VC
9     VC
10    VC
11    VC
12    VC
13    VC
14    VC]
tabula.io.read_pdf_with_template(input_path: IO | str | PathLike, template_path: IO | str | PathLike, pandas_options: Dict[str, Any] | None = None, encoding: str = 'utf-8', java_options: List[str] | None = None, user_agent: str | None = None, use_raw_url: bool = False, pages: str | int | Iterable[int] | None = None, guess: bool = False, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: List[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, output_path: str | None = None, force_subprocess: bool = False, options: str | None = None) List[DataFrame][source]

Read tables in PDF with a Tabula App template.

Parameters:
  • input_path (str, path object or file-like object) – File like object of target PDF file. It can be URL, which is downloaded by tabula-py automatically.

  • template_path (str, path object or file-like object) – File like object for Tabula app template. It can be URL, which is downloaded by tabula-py automatically.

  • pandas_options (dict, optional) – Set pandas options like {‘header’: None}.

  • encoding (str, optional) – Encoding type for pandas. Default is ‘utf-8’

  • java_options (list, optional) – Set java options like ["-Xmx256m"]. This option will be ignored once JVM is launched.

  • user_agent (str, optional) – Set a custom user-agent when download a pdf from a url. Otherwise it uses the default urllib.request user-agent.

  • use_raw_url (bool) – It enforces to use input_path string for url without quoting/dequoting. Default: False

  • pages (str, int, iterable of int, optional) –

    An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1

    Examples

    '1-2,3', 'all', [1,2]

  • guess (bool, optional) –

    Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.

    Note

    As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.

  • area (iterable of float, iterable of iterable of float, optional) –

    Portion of the page to analyze(top,left,bottom,right). Default is entire page.

    Note

    If you want to use multiple area options and extract in one table, it should be better to set multiple_tables=False for read_pdf()

    Examples

    [269.875,12.75,790.5,561], [[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]

  • relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by '%', input will be taken as % of actual height or width of the page. Default False.

  • lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • password (str, optional) – Password to decrypt document. Default: empty

  • silent (bool, optional) – Suppress all stderr output.

  • columns (iterable, optional) –

    X coordinates of column boundaries.

    Example

    [10.1, 20.2, 30.3]

  • relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default False.

  • format (str, optional) – Format for output file or extracted object. ("CSV", "TSV", "JSON")

  • batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.

  • output_path (str, optional) – Output file path. File format of it is depends on format. Same as --outfile option of tabula-java.

  • force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default False.

  • options (str, optional) – Raw option string for tabula-java.

Returns:

list of DataFrame.

Raises:
  • FileNotFoundError – If downloaded remote file doesn’t exist.

  • ValueError – If output_format is unknown format, or if downloaded remote file size is 0.

  • tabula.errors.CSVParseError – If pandas CSV parsing failed.

  • tabula.errors.JavaNotFoundError – If java is not installed or found.

  • subprocess.CalledProcessError – If tabula-java execution failed.

Examples

You can use template file extracted by tabula app.

>>> import tabula
>>> tabula.read_pdf_with_template(pdf_path, "/path/to/data.tabula-template.json")
[             Unnamed: 0   mpg  cyl   disp   hp  ...   qsec  vs  am  gear  carb
0             Mazda RX4  21.0    6  160.0  110  ...  16.46   0   1     4     4
1         Mazda RX4 Wag  21.0    6  160.0  110  ...  17.02   0   1     4     4
2            Datsun 710  22.8    4  108.0   93  ...  18.61   1   1     4     1
3        Hornet 4 Drive  21.4    6  258.0  110  ...  19.44   1   0     3     1
4     Hornet Sportabout  18.7    8  360.0  175  ...  17.02   0   0     3     2
5               Valiant  18.1    6  225.0  105  ...  20.22   1   0     3     1
6            Duster 360  14.3    8  360.0  245  ...  15.84   0   0     3     4
7             Merc 240D  24.4    4  146.7   62  ...  20.00   1   0     4     2
8              Merc 230  22.8    4  140.8   95  ...  22.90   1   0     4     2
9              Merc 280  19.2    6  167.6  123  ...  18.30   1   0     4     4
10            Merc 280C  17.8    6  167.6  123  ...  18.90   1   0     4     4
11           Merc 450SE  16.4    8  275.8  180  ...  17.40   0   0     3     3
12           Merc 450SL  17.3    8  275.8  180  ...  17.60   0   0     3     3
13          Merc 450SLC  15.2    8  275.8  180  ...  18.00   0   0     3     3
14   Cadillac Fleetwood  10.4    8  472.0  205  ...  17.98   0   0     3     4
15  Lincoln Continental  10.4    8  460.0  215  ...  17.82   0   0     3     4
16    Chrysler Imperial  14.7    8  440.0  230  ...  17.42   0   0     3     4
17             Fiat 128  32.4    4   78.7   66  ...  19.47   1   1     4     1
18          Honda Civic  30.4    4   75.7   52  ...  18.52   1   1     4     2
19       Toyota Corolla  33.9    4   71.1   65  ...  19.90   1   1     4     1
20        Toyota Corona  21.5    4  120.1   97  ...  20.01   1   0     3     1
21     Dodge Challenger  15.5    8  318.0  150  ...  16.87   0   0     3     2
22          AMC Javelin  15.2    8  304.0  150  ...  17.30   0   0     3     2
23           Camaro Z28  13.3    8  350.0  245  ...  15.41   0   0     3     4
24     Pontiac Firebird  19.2    8  400.0  175  ...  17.05   0   0     3     2
25            Fiat X1-9  27.3    4   79.0   66  ...  18.90   1   1     4     1
26        Porsche 914-2  26.0    4  120.3   91  ...  16.70   0   1     5     2
27         Lotus Europa  30.4    4   95.1  113  ...  16.90   1   1     5     2
28       Ford Pantera L  15.8    8  351.0  264  ...  14.50   0   1     5     4
29         Ferrari Dino  19.7    6  145.0  175  ...  15.50   0   1     5     6
30        Maserati Bora  15.0    8  301.0  335  ...  14.60   0   1     5     8
31           Volvo 142E  21.4    4  121.0  109  ...  18.60   1   1     4     2
[32 rows x 12 columns],
    0            1             2            3        4
0  NaN  Sepal.Width  Petal.Length  Petal.Width  Species
1  5.1          3.5           1.4          0.2   setosa
2  4.9          3.0           1.4          0.2   setosa
3  4.7          3.2           1.3          0.2   setosa
4  4.6          3.1           1.5          0.2   setosa
5  5.0          3.6           1.4          0.2   setosa,
    0             1            2             3            4          5
0  NaN  Sepal.Length  Sepal.Width  Petal.Length  Petal.Width    Species
1  145           6.7          3.3           5.7          2.5  virginica
2  146           6.7          3.0           5.2          2.3  virginica
3  147           6.3          2.5           5.0          1.9  virginica
4  148           6.5          3.0           5.2          2.0  virginica
5  149           6.2          3.4           5.4          2.3  virginica,
    Unnamed: 0 supp  dose
0          4.2   VC   0.5
1         11.5   VC   0.5
2          7.3   VC   0.5
3          5.8   VC   0.5
4          6.4   VC   0.5
5         10.0   VC   0.5
6         11.2   VC   0.5
7         11.2   VC   0.5
8          5.2   VC   0.5
9          7.0   VC   0.5
10        16.5   VC   1.0
11        16.5   VC   1.0
12        15.2   VC   1.0
13        17.3   VC   1.0]

tabula.util

Utility module providing some convenient functions.

class tabula.util.TabulaOption(pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Iterable[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, output_path: str | None = None, options: str | None = '', multiple_tables: bool = True)[source]

Bases: object

Build options for tabula-java

Parameters:
  • pages (str, int, iterable of int, optional) –

    An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1

    Examples

    '1-2,3', 'all', [1,2]

  • guess (bool, optional) –

    Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.

    Note

    As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.

  • area (iterable of float, iterable of iterable of float, optional) –

    Portion of the page to analyze(top,left,bottom,right). Default is entire page.

    Note

    If you want to use multiple area options and extract in one table, it should be better to set multiple_tables=False for read_pdf()

    Examples

    [269.875,12.75,790.5,561], [[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]

  • relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by '%', input will be taken as % of actual height or width of the page. Default False.

  • lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)

  • password (str, optional) – Password to decrypt document. Default: empty

  • silent (bool, optional) – Suppress all stderr output.

  • columns (iterable, optional) –

    X coordinates of column boundaries.

    Example

    [10.1, 20.2, 30.3]

  • relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default False.

  • format (str, optional) – Format for output file or extracted object. ("CSV", "TSV", "JSON")

  • batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.

  • output_path (str, optional) – Output file path. File format of it is depends on format. Same as --outfile option of tabula-java.

  • options (str, optional) – Raw option string for tabula-java.

  • multiple_tables (bool, optional) – Extract multiple tables into a dataframe. Default: True

area: Iterable[float] | Iterable[Iterable[float]] | None = None
batch: str | None = None
build_option_list() List[str][source]

Convert to tabula-java option list

columns: Iterable[float] | None = None
format: str | None = None
guess: bool = True
lattice: bool = False
merge(other: TabulaOption) TabulaOption[source]

Merge two TabulaOption. self will overwrite other fields’ values.

multiple_tables: bool = True
options: str | None = ''
output_path: str | None = None
pages: str | int | Iterable[int] | None = None
password: str | None = None
relative_area: bool = False
relative_columns: bool = False
silent: bool | None = None
stream: bool = False
tabula.util.environment_info() None[source]

Show environment information for reporting.

Returns:

Detailed information like Python version, Java version, or OS environment, etc.

Return type:

str

tabula.util.java_version() str[source]

Show Java version

Returns:

Result of java -version

Return type:

str

Internal interfaces

tabula.template

tabula.template.load_template(path_or_buffer: IO | str | PathLike) List[TabulaOption][source]

Build tabula-py option from template file

Parameters:

path_or_buffer (str, path object or file-like object) – File like object of Tabula app template.

Returns:

tabula-py options

Return type:

dict

tabula.file_util

tabula.file_util.is_file_like(obj: IO | str | PathLike) bool[source]

Check file like object

Parameters:

obj – file like object.

Returns:

file like object or not

Return type:

bool

tabula.file_util.localize_file(path_or_buffer: IO | str | PathLike, user_agent: str | None = None, suffix: str = '.pdf', use_raw_url=False) Tuple[str, bool][source]

Ensure localize target file.

If the target file is remote, this function fetches into local storage.

Parameters:
  • path_or_buffer (str) – File path or file like object or URL of target file.

  • user_agent (str, optional) – Set a custom user-agent when download a pdf from a url. Otherwise it uses the default urllib.request user-agent.

  • suffix (str, optional) – File extension to check.

  • use_raw_url (bool) – Use path_or_buffer without quoting/dequoting.

Returns:

tuple of str and bool, which represents file name in local storage and temporary file flag.

Return type:

(str, bool)

tabula.errors

exception tabula.errors.CSVParseError(message: Any, cause: Any)[source]

Bases: ParserError

Error represents CSV parse error, which mainly caused by pandas.

exception tabula.errors.JavaNotFoundError[source]

Bases: Exception

Error represents Java doesn’t exist.

Indices and tables