tabula-py: Read tables in a PDF into DataFrame
tabula-py
is a simple Python wrapper of tabula-java, which can read table of PDF.
You can read tables from PDF and convert them into pandas’ DataFrame. tabula-py also converts a PDF file into CSV/TSV/JSON file.
We highly recommend looking at the example notebook and trying it on Google Colab.
For high-level API reference, see High level interfaces.
Getting Started
Requirements
Java
Java 8+
Python
3.8+
Installation
Before installing tabula-py, ensure you have Java runtime on your environment.
You can install tabula-py from PyPI with pip
command.
pip install tabula-py
If you want to leverage faster execution with jpype, install with jpype extra.
pip install tabula-py[jpype]
Note
conda recipe on conda-forge is not maintained by us.
We recommend installing via pip
to use the latest version of tabula-py.
Get tabula-py working (Windows 10)
This instruction is originally written by @lahoffm. Thanks!
If you don’t have it already, install Java
Try to run an example code (replace the appropriate PDF file name).
If there’s a
FileNotFoundError
when it callsread_pdf()
, and when you typejava
on command line it says'java' is not recognized as an internal or external command, operable program or batch file
, you should setPATH
environment variable to point to the Java directory.Find the main Java folder like
jre...
orjdk...
. On Windows 10 it was underC:\Program Files\Java
On Windows 10: Control Panel -> System and Security -> System -> Advanced System Settings -> Environment Variables -> Select PATH –> Edit
Add the
bin
folder likeC:\Program Files\Java\jre1.8.0_144\bin
, hit OK a bunch of times.On command line,
java
should now print a list of options, andtabula.read_pdf()
should run.
Example
tabula-py enables you to extract tables from a PDF into a DataFrame, or a JSON. It can also extract tables from a PDF and save the file as a CSV, a TSV, or a JSON.
import tabula
# Read pdf into a list of DataFrame
dfs = tabula.read_pdf("test.pdf", pages='all')
# Read remote pdf into a list of DataFrame
dfs2 = tabula.read_pdf("https://github.com/tabulapdf/tabula-java/raw/master/src/test/resources/technology/tabula/arabic.pdf")
# convert PDF into CSV
tabula.convert_into("test.pdf", "output.csv", output_format="csv", pages='all')
# convert all PDFs in a directory
tabula.convert_into_by_batch("input_directory", output_format='csv', pages='all')
See example notebook for more detail. I also recommend reading the tutorial article written by @aegis4048 and another tutorial written by @tdpetrou.
Note
If you face some issues, we’d recommend trying tabula.app to see the limitation of tabula-java. Also, see FAQ as well.
FAQ
tabula-py
does not work
There are several possible reasons, but tabula-py
is just a wrapper of tabula-java , make sure you’ve installed Java, and you can use java
command on your terminal. Many issue reporters forget to set PATH for java
command.
You can check whether tabula-py can call java
from the Python process with tabula.environment_info()
function.
I can’t run from tabula import read_pdf
If you’ve installed tabula
, it will conflict with the namespace. You should install tabula-py
after removing tabula
.
pip uninstall tabula
pip install tabula-py
I got an empty DataFrame. How can I resolve it?
tabula-py and tabula-java don’t support image-based PDFs. It should contain text-based table information.
Before tuning the tabula-py option, you have to check you set an appropriate pages
option. By default, tabula-py extracts tables from the first page of your PDF, with pages=1
argument.
If you want to extract from all pages, you need to set pages
option like pages="all"
or pages=[1, 2, 3]
.
You might want to extract multiple tables from multiple pages, if so you need to set multiple_tables=True
together.
Depending on the PDF’s complexity, it might be difficult to extract table contents accurately.
Tuning points of tabula-py are limited:
Set specific
area
for accurate table detectionTry
lattice=True
option for the table having explicit lines. Or trystream=True
option
To know the limitation of tabula-java, I highly recommend using tabula app, the GUI version of tabula-java.
tabula app can:
specify the area with GUI
show a preview of the extraction with lattice or stream mode
export template that is reusable for tabula-py
Even if you can’t extract tabula-py for those table contents which can be extracted tabula app appropriately, file an issue on GitHub.
The result is different from tabula-java
. Or, stream
option seems not to work appropriately
tabula-py
set guess
option True
by default, for beginners. It is known to make a conflict between stream
option. If you feel something strange with your result, please set guess=False
.
Can I use option xxx
?
Yes. You can use options
argument as follows. The format is the same as CLI of tabula-java.
read_pdf(file_path, options="--columns 10.1,20.2,30.3")
How can I ignore useless area?
In short, you can extract with area
and spreadsheet
options.
In [4]: tabula.read_pdf('./table.pdf', spreadsheet=True, area=(337.29, 226.49, 472.85, 384.91))
Picked up JAVA_TOOL_OPTIONS: -Dfile.encoding=UTF-8
Out[4]:
Unnamed: 0 Col2 Col3 Col4 Col5
0 A B 12 R G
1 NaN R T 23 H
2 B B 33 R A
3 C T 99 E M
4 D I 12 34 M
5 E I I W 90
6 NaN 1 2 W h
7 NaN 4 3 E H
8 F E E4 R 4
How to use area
option
According to tabula-java wiki, there is an explanation of how to specify the area: https://github.com/tabulapdf/tabula-java/wiki/Using-the-command-line-tabula-extractor-tool#grab-coordinates-of-the-table-you-want
For example, using macOS’s preview, I got area information of this PDF:

java -jar ./target/tabula-1.0.1-jar-with-dependencies.jar -p all -a $y1,$x1,$y2,$x2 -o $csvfile $filename
given
# Note the left, top, height, and width parameters and calculate the following:
y1 = top
x1 = left
y2 = top + height
x2 = left + width
I confirmed with tabula-java:
java -jar ./tabula/tabula-1.0.1-jar-with-dependencies.jar -a "337.29,226.49,472.85,384.91" table.pdf
Without -r
(same as --spreadsheet
) option, it does not work properly.
I faced ParserError: Error tokenizing data. C error
. How can I extract multiple tables?
This error occurs when pandas tries to extract multiple tables with different column size at once.
Use multiple_tables
option, then you can avoid this error.
I want to prevent tabula-py from stealing focus on every call on my mac
Set java_options=["-Djava.awt.headless=true"]
. kudos @jakekara
I got ?
character with results on Windows. How can I avoid it?
If the encoding of PDF is UTF-8, you should set chcp 65001
on your terminal before launching a Python process.
chcp 65001
Then you can extract UTF-8 PDF with java_options="-Dfile.encoding=UTF8"
option. This option will be added with encoding='utf-8'
option, which is also set by default.
# This is an example for java_options is set explicitly
df = read_pdf(file_path, java_options="-Dfile.encoding=UTF8")
Replace 65001
and UTF-8
appropriately, if the file encoding isn’t UTF-8.
I can’t extract file/directory names with space on Windows
You should escape the file/directory name yourself.
I want to use a different tabula .jar file
You can specify the jar location via environment variable
export TABULA_JAR=".../tabula-x.y.z-jar-with-dependencies.jar"
I want to extract multiple tables from a document
You can use the following example code
df = read_pdf(file_path, multiple_tables=True)
The result will be a list of DataFrames. If you want separate tables across all pages in a document, use the pages
argument.
Table cell contents sometimes overflow into the next row.
You can try using lattice=True
, which will often work if there are lines separating cells in the table.
I got a warning/error message from PDFBox including org.apache.pdfbox.pdmodel.
. Is it the cause of the empty dataframe?
No.
Sometimes, you might see a message like `` Jul 17, 2019 10:21:25 AM org.apache.pdfbox.pdmodel.font.PDType1Font WARNING: Using fallback font NimbusSanL-Regu for Univers. Nothing was parsed from this one.`` This error message came from Apache PDFBox which is used under tabula-java, and this is caused by the PDF itself. Neither tabula-py nor tabula-java can’t handle the warning itself, except for the silent option that suppresses the warning.
java_options
is ignored once read_pdf
or similar funcion is called.
Since jpype doesn’t support changing JVM options after the JVM is started, java_options
is ignored once read_pdf
or similar funcion is called. If you want to change JVM options, you need to restart the Python process.
See also: https://jpype.readthedocs.io/en/latest/api.html#jpype.shutdownJVM
I can’t figure out accurate extraction with tabula-py. Are there any similar Python libraries?
I know tabula-py has limitations depending on tabula-java. Sometimes your PDF is too complex to tabula-py. If you want to find plan B, there are similar packages as the following:
Contributing to tabula-py
Interested in helping out? I’d love to have your help!
You can help by:
Adding or editing documentation.
Contributing code via a Pull Request.
Write a blog post or spread the word about
tabula-py
to people who might be able to benefit from using it.
Code formatting and testing
If you want to become a contributor, you can install dependency after cloning the repo as follows:
pip install -e .[dev, test]
pip install nox
For running tests and linter, run nox command.
nox .
Documentation
You can build document on your environment as follows:
pip install -e .[doc]
cd docs && make html
The documentation source is under docs/
directory and the document is published on Read the Docs automatically.
tabula
High level interfaces
tabula.io
This module is a wrapper of tabula, which enables table extraction from a PDF.
This module extracts tables from a PDF into a pandas DataFrame via jpype.
Instead of importing this module, you can import public interfaces such as
read_pdf()
, read_pdf_with_template()
, convert_into()
,
convert_into_by_batch()
from tabula module directory.
Note
If you want to use your own tabula-java JAR file, set TABULA_JAR
to
environment variable for JAR path.
Example
>>> import tabula
>>> dfs = tabula.read_pdf("/path/to/sample.pdf", pages="all")
- tabula.io.convert_into(input_path: IO | str | PathLike, output_path: str, output_format: str = 'csv', java_options: List[str] | None = None, pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Iterable[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, force_subprocess: bool = False, options: str = '') None [source]
Convert tables from PDF into a file. Output file will be saved into output_path.
- Parameters:
input_path (file like obj) – File like object of target PDF file.
output_path (str) – File path of output file.
output_format (str, optional) – Output format of this function (
csv
,json
ortsv
). Default:csv
java_options (list, optional) –
Set java options. This option will be ignored once JVM is launched.
Example
"-Xmx256m"
.pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (iterable, optional) –
X coordinates of column boundaries.
Example
[10.1, 20.2, 30.3]
format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.
force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default
False
.options (str, optional) – Raw option string for tabula-java.
- Raises:
FileNotFoundError – If downloaded remote file doesn’t exist.
ValueError – If output_format is unknown format, or if downloaded remote file size is 0.
tabula.errors.JavaNotFoundError – If java is not installed or found.
subprocess.CalledProcessError – If tabula-java execution failed.
- tabula.io.convert_into_by_batch(input_dir: str, output_format: str = 'csv', java_options: List[str] | None = None, pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Iterable[float] | None = None, relative_columns: bool = False, format: str | None = None, output_path: str | None = None, force_subprocess: bool = False, options: str = '') None [source]
Convert tables from PDFs in a directory.
- Parameters:
input_dir (str) – Directory path.
output_format (str, optional) – Output format of this function (csv, json or tsv)
java_options (list, optional) – Set java options like -Xmx256m. This option will be ignored once JVM is launched.
pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (iterable, optional) –
X coordinates of column boundaries.
Example
[10.1, 20.2, 30.3]
relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default
False
.format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default
False
.options (str, optional) – Raw option string for tabula-java.
- Returns:
Nothing. Outputs are saved into the same directory with input_dir
- Raises:
ValueError – If input_dir doesn’t exist.
- tabula.io.read_pdf(input_path: IO | str | PathLike, output_format: str | None = None, encoding: str = 'utf-8', java_options: List[str] | None = None, pandas_options: Dict[str, Any] | None = None, multiple_tables: bool = True, user_agent: str | None = None, use_raw_url: bool = False, pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Iterable[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, output_path: str | None = None, force_subprocess: bool = False, options: str = '') List[DataFrame] | Dict[str, Any] [source]
Read tables in PDF.
- Parameters:
input_path (str, path object or file-like object) – File like object of target PDF file. It can be URL, which is downloaded by tabula-py automatically.
output_format (str, optional) – Output format for returned object (
dataframe
orjson
) Giving this option enforces to ignore multiple_tables option.encoding (str, optional) – Encoding type for pandas. Default:
utf-8
java_options (list, optional) –
Set java options. This option will be ignored once JVM is launched.
Example
["-Xmx256m"]
pandas_options (dict, optional) –
Set pandas options.
Example
{'header': None}
Note
With
multiple_tables=True
(default), pandas_options is passed to pandas.DataFrame, otherwise it is passed to pandas.read_csv. Those two functions are different for accept options likedtype
.multiple_tables (bool) –
It enables to handle multiple tables within a page. Default:
True
Note
If multiple_tables option is enabled, tabula-py uses not
pd.read_csv()
, butpd.DataFrame()
. Make sure to pass appropriate pandas_options.user_agent (str, optional) – Set a custom user-agent when download a pdf from a url. Otherwise it uses the default
urllib.request
user-agent.use_raw_url (bool) – It enforces to use input_path string for url without quoting/dequoting. Default: False
pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (iterable, optional) –
X coordinates of column boundaries.
Example
[10.1, 20.2, 30.3]
relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default
False
.format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.
output_path (str, optional) – Output file path. File format of it is depends on
format
. Same as--outfile
option of tabula-java.force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default
False
.options (str, optional) – Raw option string for tabula-java.
- Returns:
list of DataFrames or dict.
- Raises:
FileNotFoundError – If downloaded remote file doesn’t exist.
ValueError – If output_format is unknown format, or if downloaded remote file size is 0.
tabula.errors.CSVParseError – If pandas CSV parsing failed.
tabula.errors.JavaNotFoundError – If java is not installed or found.
subprocess.CalledProcessError – If tabula-java execution failed.
Examples
Here is a simple example. Note that
read_pdf()
only extract page 1 by default.- Notes:
As of tabula-py 2.0.0,
read_pdf()
sets multiple_tables=True by default. If you want to get consistent output with previous version, set multiple_tables=False.
>>> import tabula >>> pdf_path = "https://github.com/chezou/tabula-py/raw/master/tests/resources/data.pdf" >>> tabula.read_pdf(pdf_path, stream=True) [ Unnamed: 0 mpg cyl disp hp drat wt qsec vs am gear carb 0 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 5 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 10 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 11 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 12 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 13 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 14 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 15 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 16 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 17 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 18 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 19 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 20 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 21 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 22 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 23 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 24 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 25 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 26 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 27 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 28 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 29 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 30 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 31 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2]
If you want to extract all pages, set
pages="all"
.>>> dfs = tabula.read_pdf(pdf_path, pages="all") >>> len(dfs) 4 >>> dfs [ 0 1 2 3 4 5 6 7 8 9 0 mpg cyl disp hp drat wt qsec vs am gear 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5, 0 1 2 3 4 0 Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa, 0 1 2 3 4 5 0 NaN Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 145 6.7 3.3 5.7 2.5 virginica 2 146 6.7 3.0 5.2 2.3 virginica 3 147 6.3 2.5 5.0 1.9 virginica 4 148 6.5 3.0 5.2 2.0 virginica 5 149 6.2 3.4 5.4 2.3 virginica 6 150 5.9 3.0 5.1 1.8 virginica, 0 0 supp 1 VC 2 VC 3 VC 4 VC 5 VC 6 VC 7 VC 8 VC 9 VC 10 VC 11 VC 12 VC 13 VC 14 VC]
- tabula.io.read_pdf_with_template(input_path: IO | str | PathLike, template_path: IO | str | PathLike, pandas_options: Dict[str, Any] | None = None, encoding: str = 'utf-8', java_options: List[str] | None = None, user_agent: str | None = None, use_raw_url: bool = False, pages: str | int | Iterable[int] | None = None, guess: bool = False, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: List[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, output_path: str | None = None, force_subprocess: bool = False, options: str | None = None) List[DataFrame] [source]
Read tables in PDF with a Tabula App template.
- Parameters:
input_path (str, path object or file-like object) – File like object of target PDF file. It can be URL, which is downloaded by tabula-py automatically.
template_path (str, path object or file-like object) – File like object for Tabula app template. It can be URL, which is downloaded by tabula-py automatically.
pandas_options (dict, optional) – Set pandas options like {‘header’: None}.
encoding (str, optional) – Encoding type for pandas. Default is ‘utf-8’
java_options (list, optional) – Set java options like
["-Xmx256m"]
. This option will be ignored once JVM is launched.user_agent (str, optional) – Set a custom user-agent when download a pdf from a url. Otherwise it uses the default
urllib.request
user-agent.use_raw_url (bool) – It enforces to use input_path string for url without quoting/dequoting. Default: False
pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (iterable, optional) –
X coordinates of column boundaries.
Example
[10.1, 20.2, 30.3]
relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default
False
.format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.
output_path (str, optional) – Output file path. File format of it is depends on
format
. Same as--outfile
option of tabula-java.force_subprocess (bool) – Force to use tabula-java subprocess mode. If you have some issue with jpype, try this option with same environment. Default
False
.options (str, optional) – Raw option string for tabula-java.
- Returns:
list of DataFrame.
- Raises:
FileNotFoundError – If downloaded remote file doesn’t exist.
ValueError – If output_format is unknown format, or if downloaded remote file size is 0.
tabula.errors.CSVParseError – If pandas CSV parsing failed.
tabula.errors.JavaNotFoundError – If java is not installed or found.
subprocess.CalledProcessError – If tabula-java execution failed.
Examples
You can use template file extracted by tabula app.
>>> import tabula >>> tabula.read_pdf_with_template(pdf_path, "/path/to/data.tabula-template.json") [ Unnamed: 0 mpg cyl disp hp ... qsec vs am gear carb 0 Mazda RX4 21.0 6 160.0 110 ... 16.46 0 1 4 4 1 Mazda RX4 Wag 21.0 6 160.0 110 ... 17.02 0 1 4 4 2 Datsun 710 22.8 4 108.0 93 ... 18.61 1 1 4 1 3 Hornet 4 Drive 21.4 6 258.0 110 ... 19.44 1 0 3 1 4 Hornet Sportabout 18.7 8 360.0 175 ... 17.02 0 0 3 2 5 Valiant 18.1 6 225.0 105 ... 20.22 1 0 3 1 6 Duster 360 14.3 8 360.0 245 ... 15.84 0 0 3 4 7 Merc 240D 24.4 4 146.7 62 ... 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 ... 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 ... 18.30 1 0 4 4 10 Merc 280C 17.8 6 167.6 123 ... 18.90 1 0 4 4 11 Merc 450SE 16.4 8 275.8 180 ... 17.40 0 0 3 3 12 Merc 450SL 17.3 8 275.8 180 ... 17.60 0 0 3 3 13 Merc 450SLC 15.2 8 275.8 180 ... 18.00 0 0 3 3 14 Cadillac Fleetwood 10.4 8 472.0 205 ... 17.98 0 0 3 4 15 Lincoln Continental 10.4 8 460.0 215 ... 17.82 0 0 3 4 16 Chrysler Imperial 14.7 8 440.0 230 ... 17.42 0 0 3 4 17 Fiat 128 32.4 4 78.7 66 ... 19.47 1 1 4 1 18 Honda Civic 30.4 4 75.7 52 ... 18.52 1 1 4 2 19 Toyota Corolla 33.9 4 71.1 65 ... 19.90 1 1 4 1 20 Toyota Corona 21.5 4 120.1 97 ... 20.01 1 0 3 1 21 Dodge Challenger 15.5 8 318.0 150 ... 16.87 0 0 3 2 22 AMC Javelin 15.2 8 304.0 150 ... 17.30 0 0 3 2 23 Camaro Z28 13.3 8 350.0 245 ... 15.41 0 0 3 4 24 Pontiac Firebird 19.2 8 400.0 175 ... 17.05 0 0 3 2 25 Fiat X1-9 27.3 4 79.0 66 ... 18.90 1 1 4 1 26 Porsche 914-2 26.0 4 120.3 91 ... 16.70 0 1 5 2 27 Lotus Europa 30.4 4 95.1 113 ... 16.90 1 1 5 2 28 Ford Pantera L 15.8 8 351.0 264 ... 14.50 0 1 5 4 29 Ferrari Dino 19.7 6 145.0 175 ... 15.50 0 1 5 6 30 Maserati Bora 15.0 8 301.0 335 ... 14.60 0 1 5 8 31 Volvo 142E 21.4 4 121.0 109 ... 18.60 1 1 4 2 [32 rows x 12 columns], 0 1 2 3 4 0 NaN Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa, 0 1 2 3 4 5 0 NaN Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 145 6.7 3.3 5.7 2.5 virginica 2 146 6.7 3.0 5.2 2.3 virginica 3 147 6.3 2.5 5.0 1.9 virginica 4 148 6.5 3.0 5.2 2.0 virginica 5 149 6.2 3.4 5.4 2.3 virginica, Unnamed: 0 supp dose 0 4.2 VC 0.5 1 11.5 VC 0.5 2 7.3 VC 0.5 3 5.8 VC 0.5 4 6.4 VC 0.5 5 10.0 VC 0.5 6 11.2 VC 0.5 7 11.2 VC 0.5 8 5.2 VC 0.5 9 7.0 VC 0.5 10 16.5 VC 1.0 11 16.5 VC 1.0 12 15.2 VC 1.0 13 17.3 VC 1.0]
tabula.util
Utility module providing some convenient functions.
- class tabula.util.TabulaOption(pages: str | int | Iterable[int] | None = None, guess: bool = True, area: Iterable[float] | Iterable[Iterable[float]] | None = None, relative_area: bool = False, lattice: bool = False, stream: bool = False, password: str | None = None, silent: bool | None = None, columns: Iterable[float] | None = None, relative_columns: bool = False, format: str | None = None, batch: str | None = None, output_path: str | None = None, options: str | None = '', multiple_tables: bool = True)[source]
Bases:
object
Build options for tabula-java
- Parameters:
pages (str, int, iterable of int, optional) –
An optional values specifying pages to extract from. It allows str,`int`, iterable of :int. Default: 1
Examples
'1-2,3'
,'all'
,[1,2]
guess (bool, optional) –
Guess the portion of the page to analyze per page. Default True If you use “area” option, this option becomes False.
Note
As of tabula-java 1.0.3, guess option becomes independent from lattice and stream option, you can use guess and lattice/stream option at the same time.
area (iterable of float, iterable of iterable of float, optional) –
Portion of the page to analyze(top,left,bottom,right). Default is entire page.
Note
If you want to use multiple area options and extract in one table, it should be better to set
multiple_tables=False
forread_pdf()
Examples
[269.875,12.75,790.5,561]
,[[12.1,20.5,30.1,50.2], [1.0,3.2,10.5,40.2]]
relative_area (bool, optional) – If all area values are between 0-100 (inclusive) and preceded by
'%'
, input will be taken as % of actual height or width of the page. DefaultFalse
.lattice (bool, optional) – Force PDF to be extracted using lattice-mode extraction (if there are ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
stream (bool, optional) – Force PDF to be extracted using stream-mode extraction (if there are no ruling lines separating each cell, as in a PDF of an Excel spreadsheet)
password (str, optional) – Password to decrypt document. Default: empty
silent (bool, optional) – Suppress all stderr output.
columns (iterable, optional) –
X coordinates of column boundaries.
Example
[10.1, 20.2, 30.3]
relative_columns (bool, optional) – If all values are between 0-100 (inclusive) and preceded by ‘%’, input will be taken as % of actual width of the page. Default
False
.format (str, optional) – Format for output file or extracted object. (
"CSV"
,"TSV"
,"JSON"
)batch (str, optional) – Convert all PDF files in the provided directory. This argument should be directory path.
output_path (str, optional) – Output file path. File format of it is depends on
format
. Same as--outfile
option of tabula-java.options (str, optional) – Raw option string for tabula-java.
multiple_tables (bool, optional) – Extract multiple tables into a dataframe. Default: True
- area: Iterable[float] | Iterable[Iterable[float]] | None = None
- batch: str | None = None
- columns: Iterable[float] | None = None
- format: str | None = None
- guess: bool = True
- lattice: bool = False
- merge(other: TabulaOption) TabulaOption [source]
Merge two TabulaOption. self will overwrite other fields’ values.
- multiple_tables: bool = True
- options: str | None = ''
- output_path: str | None = None
- pages: str | int | Iterable[int] | None = None
- password: str | None = None
- relative_area: bool = False
- relative_columns: bool = False
- silent: bool | None = None
- stream: bool = False
Internal interfaces
tabula.template
- tabula.template.load_template(path_or_buffer: IO | str | PathLike) List[TabulaOption] [source]
Build tabula-py option from template file
- Parameters:
path_or_buffer (str, path object or file-like object) – File like object of Tabula app template.
- Returns:
tabula-py options
- Return type:
dict
tabula.file_util
- tabula.file_util.is_file_like(obj: IO | str | PathLike) bool [source]
Check file like object
- Parameters:
obj – file like object.
- Returns:
file like object or not
- Return type:
bool
- tabula.file_util.localize_file(path_or_buffer: IO | str | PathLike, user_agent: str | None = None, suffix: str = '.pdf', use_raw_url=False) Tuple[str, bool] [source]
Ensure localize target file.
If the target file is remote, this function fetches into local storage.
- Parameters:
path_or_buffer (str) – File path or file like object or URL of target file.
user_agent (str, optional) – Set a custom user-agent when download a pdf from a url. Otherwise it uses the default
urllib.request
user-agent.suffix (str, optional) – File extension to check.
use_raw_url (bool) – Use path_or_buffer without quoting/dequoting.
- Returns:
tuple of str and bool, which represents file name in local storage and temporary file flag.
- Return type:
(str, bool)